English

Operating and Assembly Instructions Incremental Hollow-Shaft Encoder FGH 40

Read the Operating and Assembly Instructions prior to assembly, starting installation and handling! Keep for future reference!

Trademark

Brand names and product names are trademarks or registered trademarks of their respective owner. Protected trademarks bearing a [™] or ® symbol are not always depicted as such in the manual. However, the statutory rights of the respective owners remain unaffected.

Manufacturer / publisher

Johannes Hübner Fabrik elektrischer Maschinen GmbH Siemensstr. 7 35394 Giessen Germany Phone: +49 641 7969 0 Fax: +49 641 73645 Internet: www.huebner-giessen.com E-Mail: info@huebner-giessen.com

This manual has been drawn up with the utmost care and attention. Nevertheless, we cannot exclude the possibility of errors in form and content. It is strictly forbidden to reproduce this publication or parts of this publication in any form or by any means without the prior written permission of Johannes Hübner Fabrik elektrischer Maschinen GmbH.

Johannes Hübner Fabrik elektrischer Maschinen GmbH is listed by Underwriters Laboratories.

UL certificates can be requested from us.

An overview of our UL devices can be found at the following link:

https://iq.ulprospector.com/info

UL File Number: E351535

Туре	UL model No.
FGH 40 K	FGH 40 K-XXXX
	FGHJ 40 K-XXXX
	FGH 40 K-XXXX-S
	FGH 40 KK-XXXX
	FGHJ 40 KK-XXXX
FGH 40 L	FGH 40 L-XXXX
	FGHJ 40 L-XXXX
	FGH 40 LL-XXXX
	FGHJ 40 LL-XXXX

Subject to errors and changes due to technical improvements. Copyright © Johannes Hübner Fabrik elektrischer Maschinen GmbH All rights reserved.

Directory

1	Ger	neral	. 5
	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Information about the Operating and Assembly Instructions Scope of delivery Explanation of symbols Disclaimer Copyright Guarantee terms Customer service	5 5 6 6
2	Safe	ety	. 6
	2.6	Responsibility of the owner Intended use Non- intended use Personnel Personal protective equipment Special dangers 6.1 Electrical current 6.2 Rotating shaft / Hot surfaces 6.3 Safeguarding against restart	6 7 7 7 7 7 7
3	Тес	hnical Data	. 8
	3.2 3.2 3.2 3.3 3.3	Type plates Electrical and mechanical data 2.1 For pulse rates (square wave pulses) 2.2 Output signals Sine / Cosine Type code 3.1 For pulse rates (square wave pulses) 3.2 For output signals Sine / Cosine	. 9 . 9 10 14 14
4		nsport, packaging and storage	
	4.2	Safety instructions for transport Incoming goods inspection Packaging / disposal Storage of packages (devices)	16 16
5	Inst	allation and commissioning	17
	5.! 5.!	Safety instructions Technical information Required tools Mounting preparations Mounting hollow-shaft type FGH 40 5.1 Standard (type P with feather key, type K with clamping without feather key) 5.2 Hollow shaft with clamping ring and blind hole (type R with inch dimensions) Dismantling	17 17 18 18 18 20

5.6.1 Safety instruction	21
5.6.2 Dismantling hollow- shaft type FGH 40	21
5.7 Electrical connection and start up	22
5.7.1 Preparing cables	22
5.7.2 Electrical connection	
6 Faults	24
6.1 Faults table	24
7 Inspections	25
7.1 Safety instructions	25
7.2 Maintenance information	
7.3 Inspection schedule	
8 Disposal	25
8.1 Disposal procedure	25
9 Spare Parts	25
10 Dimension drawings	26
10.1 Construction type hollow- shaft	
11 Connection diagrams	36

1 General

1.1 Information about the Operating and Assembly Instructions

These Operating and Assembly Instructions provide important instructions for working with the device. They must be carefully read prior to starting all tasks, and the instructions contained herein must be followed.

In addition, applicable local regulations for the prevention of industrial accidents and general safety regulations must be complied with.

1.2 Scope of delivery

Incremental Hollow-Shaft Encoder FGH 40, Operating and Assembly Instructions.

1.3 Explanation of symbols

Warnings are indicated by symbols in these Operating and Assembly Instructions. The warnings are introduced by signal words that express the scope of the hazard.

The warnings must be strictly heeded; you must act prudently to prevent accidents, personal injury, and property damage.

WARNING!

Indicates a possibly dangerous situation that can result in death or serious injury if it is not avoided.

CAUTION!

Indicates a possibly dangerous situation that can result in minor injury if it is not avoided.

CAUTION!

Indicates a possibly dangerous situation that can result in material damage if it is not avoided.

0
ЪЦ

NOTES!

Indicates useful tips and recommendations as well as information for efficient and troublefree operation.

NOTES!

DANGER!

Do not use a hammer or similar tool when installing the device due to the risk of damage occurring to the bearings or coupling!

Life-threatening danger due to electric shock!

Indicates a life-threatening situation due to electric shock. If the safety instructions are not complied with there is danger of serious injury or death. The work that must be executed should only be performed by a qualified electrician.

1.4 Disclaimer

All information and instructions in these Operating and Assembly Instructions have been provided under due consideration of applicable guidelines, as well as our many years of experience.

The manufacturer assumes no liability for damages due to:

- Failure to follow the instructions in the Operating and Assembly Instructions
- Non-intended use
- Deployment of untrained personnel
- Opening of the device or conversions of the device

In all other aspects the obligations agreed in the delivery contract as well as the delivery conditions of the manufacturer apply.

1.5 Copyright

0

NOTES!

Content information, text, drawings, graphics, and other representations are protected by copyright and are subject to commercial property rights.

It is strictly forbidden to make copies of any kind or by any means for any purpose other than in conjunction with using the device without the prior written agreement of the manufacturer. Any copyright infringements will be prosecuted.

1.6 Guarantee terms

The guarantee terms are provided in the manufacturer's terms and conditions.

1.7 Customer service

For technical information personnel is available that can be contacted by telephone, fax or email. See manufacturer's address on page 2.

2 Safety

DANGER!

This section provides an overview of all the important safety aspects that ensure protection of personnel, as well as safe and trouble-free device operation. If these safety instructions are not complied with significant hazard can occur.

2.1 Responsibility of the owner

The device is used in commercial applications. Consequently the owner of the device is subject to the legal occupational safety obligations and subject to the safety, accident prevention and environmental protection regulations that are applicable for the device's area of implementation.

2.2 Intended use

The device has been designed and constructed exclusively for the intended use described here.

Series FGH 40 Incremental Hollow- Shaft Encoders are used for measurement of rotations, for instance of electrical and mechanical drives and shafts.

Claims of any type due to damage arising from non-intended use are excluded; the owner bears sole responsibility for non-intended use.

For UL and CSA:

For the use in NFPA 79 applications only.

2.3 Non- intended use

Do not use the device in potentially explosive areas.

The device must not be subjected to mechanical loads in addition to its own weight and unavoidable vibration and shock loads that arise during normal operations.

Examples for non-permitted mechanical loads (incomplete list):

- Fastening transport or lifting tackle to the device, for example a crane hook to lift a motor.
- Fastening packaging components to the device, for example ratchet straps, tarpaulins etc.
- Using the device as a step, for example by people to climb onto a motor.

2.4 Personnel

Installation and commissioning as well as disassembly routines must be carried out by skilled technical staff only.

2.5 Personal protective equipment

Wear personal protective equipment such as safety shoes and safety clothing to minimise risks to health and safety when carrying out work such as installation, disassembly or commissioning. Adhere to all applicable statutory regulations as well as the rules and standards determined by the owner.

2.6 Special dangers

Residual risks that have been determined based on a risk assessment are cited below.

2.6.1 Electrical current

DANGER!

Life-threatening danger due to electrical shock!

There is an imminent life-threatening hazard if live parts are touched. Damage to insulation or to specific components can pose a life-threatening hazard.

Therefore: Immediately switch off the device and have it repaired if there is damage to the insulation of the power supply.

De-energize the electrical equipment and ensure that all components are connected for all tasks on the electrical equipment.

Keep moisture away from live parts. Moisture can cause short circuits.

2.6.2 Rotating shaft / Hot surfaces

WARNING!

Danger of injury due to rotating shafts and hot surfaces!

Touching rotating shafts can cause serious injuries.

Therefore:

Do not reach into moving parts/shafts or handle moving parts/shafts during operation. Close to protect from injury all access openings in flanges with the corresponding plug screw, and provided you exposed rotating components with protective covers.

Do not open covers during operation. Prior to opening the covers ensure that all parts have come to a standstill.

The encoder can become hot during prolonged use. In case of contact risk of burns is existing.

2.6.3 Safeguarding against restart

DANGER!

Life-threatening danger if restarted without authorization!

When correcting faults there is danger of the power supply being switched on without authorization.

This poses a life-threatening hazard for persons in the danger zone.

Therefore:

Prior to starting work, switch off the system and safeguard it from being switched on again.

3 Technical Data

3.1 Type plates

Below are some Example nameplates for different device models shown.

Without UL-Certification

Without UL-Certification

Type plates are located on the outside of the housing and contains the following information:

- Manufacturer, Address
- Type
- CE marking
- Serial number (S/N)
- Commission number (C/N)
- Year of construction
- Pulse rate

- Protection class
- Power supply
- No-load current
- Outputs
- Certification references
- QR-Code

3.2 Electrical and mechanical data

Pulse rates	Value
Standard pulse rates	500, 600, 1000, 1024, 1200, 2000, 2048, 2400, 2500
Special pulse rates	4000, 4096, 4800, 5000, 8192, 10000, 12000, 16000, 16384, 20000, 25000, 40000, 50000
	(further pulse rates according to customers specification)
Connection data	
Supply voltage	12 V 30 V DC For UL and CSA Class 2 supplied
No load-current	approx. 50 mA at 24 V
Outputs	Current limited, short-circuit proof push-pull line driver with integrated impedance adaptation for 30 to 140 Ω lines.
Pulse height (HTL)	approx. as supply voltage, output saturation voltage < 0.4 V at I∟ 30 mA
Output current	max. 150 mA at 24 V (observe derating)
Internal resistance	75 Ω bei 24 V
Slew rate	200 V / µs with C∟ 100 pF
Duty ovele	1 : 1 : 2 % for standard pulse rates

3.2.1 For pulse rates (square wave pulses)

Duty cycle	1 : 1 \pm 3 % for standard pulse rates 1 : 1 \pm 5 % for special pulse rates up to 25000 pulses		
Square wave displacement 0°, 90°	90° \pm 3 % for standard pulse rates 90° \pm 5 % or special pulse rates up to 25000 pulses		
Max. frequency	200 kHz, Higher max. frequency on request		
Special output voltage 5V (TTL)			
Pulse height	5V, RS422-compatible (TIA/EIA-Standard)		
Supply voltage	12 … 30 V DC (optional: 5 V DC) For UL and CSA Class 2 supplied		

Pulse rates	Value		
Standard pulse rates	500, 600, 1000, 1024, 1200, 2000, 2048, 2400, 2500		
Connection data			
Supply voltage	5 V 30 V DC For UL and CSA Class 2 supplied		
No load-current	Approx. 120 mA at 5 V, approx. 50 mA at 24 V		
Max. frequency	200 kHz, higher max. frequency on request		
Output signals	2 sinusoidal signals A and B each with inverted signals Reference pulse with inverted signal Signal amplitude 1 V pp / R_L = 120 Ω Error signal and inverted signal Signal amplitude 5V		
Resolution	1024 signal periodes		
Duty cycle	1 ± 0,1		
Phase shift A, B	90° ± 1°		

3.2.2 Output signals Sine / Cosine

Incremental Hollow Shaft Encoder FGH 40

Protection class acc. to DIN EN 60529	Sealing	Permissible speed	Rotor moment of inertia	Breakaway torque
IP 65	Standard	\leq 4000 rpm (*) \leq 3000 rpm	approx. 1175 gcm ²	approx. 10 Ncm
IP 66	with labyrinth seal	\leq 4000 rpm (*) \leq 3000 rpm	approx. 1325 gcm ²	approx. 10 Ncm
IP 66	with axial shaft seal	≤ 2000 rpm (*) ≤ 2000 rpm	approx. 1175 gcm ²	approx. 25 Ncm
IP 66	with radial shaft seal (for special applications, e.g. wet areas in rolling mills)	≤ 2000 rpm (*) ≤ 2000 rpm	approx. 1175 gcm ²	approx. 30 Ncm
(UL/CSA Type 1)				

(*) type FGHJ 40 (isolated bearings)

Vibration resistance	ation resistance DIN EN 60068-2-6 / IEC 68-2-6 (10 2000 Hz)	
Shock resistance	DIN EN 60068-2-27 / IEC 68-2-27 (6 ms)	150 g (=1500 m/s²)
Weight	Type FGH 40 K Type FGH 40 KK	approx. 4,2 kg approx. 4,5 kg

Encoder temperature range

Standard	0°C + 70°C
Special temperature	-25°C + 85°C -40°C + 85°C -5°C + 100°C (UL/CSA: max. + 70°C)

WARNING!

For hollow shafts with an inner diameter smaller than Ø 15 mm / Ø 0.59 inch, make sure that the vibration load is adapted.

NOTES!

The hollow shaft device FGH 40 reduces the degree of protection to IP 65, if the cover plate is not mounted. At maximum speed the permissible ambient temperature will be reduced to 60°C.

Signal outputs for pulse rates (square wave pulses)			
Basic version Basic channel 0° (A) and pulse channel 90° (B) Internal system diagnostics with error output (ERROR) Each with inverted signals	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
Option N Reference pulse (N) mechanically defined; one square-wave pulse per revolution; with inverted signal	$\frac{N}{N}$		
Option 2F Twice as many pulses as basic channel by combining the 0° and 90°channels	2F 11111 2F 11111		
Option B Rapid direction of rotation detection at each edge of the 0° and 90°channels Can be combined with Option F	B cw <u>ຕັດcw</u> ກ B cw <u>ຕັດcw</u> ກ		
Option B2 Rapid direction of rotation detection at each edge of the 0° and 90° channels; additional standstill recognition	B2 cw c ccw ∩ B2 cw c ccw ∩ stop		
Option B3 Rotation-dependent output signals. This option supports counter cards with separate UP/DOWN pulse inputs. Basic channel signals are issued at option output 1 when rotation is clockwise and at option output 2 when rotation is counterclockwise.	O1 cw ∭∏ ccw O2 cw ccw ∭∏∏		
Option S Electronic overspeed switch with two independently programmable switching points	See separate Operating and Assembly Instructions EGS [®] 40		
Fiber optic option As an alternative to conventional signal transmissions via copper cables encoder signals can also be transmitted via fiber optic cables.	Max. frequency 100 kHz		

The signal sequence 0° , 90° applies for clockwise rotation seen from the drive shaft direction. To obtain the same signal sequence for counter clockwise rotation the clamp 0° , $\overline{90}^{\circ}$ has to be connected see connection diagram.

Signal outputs for output signals sine / cosine					
Basic channel 0° (A) and pulse channel 90° (B).	A+	$\land \land \land$	Ausgang A+	Output A+	
Reference pulse (N) mechanically defined; one square-wave pulse per	A-	$\overline{\mathbb{N}}$	Ausgang A- Invers	Output A- Inverse	
revolution; with inverted signal	B+	\sim	Ausgang B+	Output B+	
Each with inverted signal.	B-	M	Ausgang B- Invers	Output B- Inverse	
Internal system diagnostics with error output (ERROR).	N+		Ausgang Nullimpuls	Output Reference	
	N-		Ausgang Nullimpuls Invers	Output Reference Inverse	
	ERR		Fehlerausgang (Low aktiv)	Error Output (Low activ)	
	ERR		Fehlerausgang (High aktiv)	Error Output (High activ)	

3.3 Type code

3.3.1 For pulse rates (square wave pulses)

3.3.1 For pul	se rates (square wav	e pulse	s)									
		FGH	J	40	K	1024	G	90G	NG	2F	S	/20P
Incremental hollow-shaft encode	r											
Isolated bearings												
Series												
connections, radialK:Terminal boxR:Burndy [®] -plugC:Connection catL:Fiber optic conS:15-pole EMC ir	ble											
version or with option												
further combined con Pulses per revolutio												
Basic signal output Basic channel 0° (A) Pulse channel 90° (B) Each with inverted sig												
	ce pulse with inverted	signal										
N2: Reference puls check (red)	e, mechanically fixed		C									
for display of re 2F: Option 2F	erence puise											
B: Option B												
B2: Option B2 B3: Option B3												
S: Option S												
Inner diameter												
(by hollow shaft des	ign)											
20 P (standard)	P: feather key											
16 P, 19P, (optional) 16 K, 25 K (optional	K: clamping											
Blind hollow shafts 0.375R 0.500R 0.625R 0.750R 0.875R	with inch dimension R: clamping with o						syste	m)				
1.000R												

3.3.2 For output signals Sine / Cosin	е							
	FGH	J	40	K	1024	S	N	/20P
Incremental hollow-shaft encoder								
Isolated bearings								
Series								
connections, radial design								
K: Terminal box								
R: Burndy [®] -plug								
C: Connection cable S: 15-pole EMC industrial plug								
S. 13-pole Lino industrial plug								
KK: 2 terminal boxes, i.e. redundant version								
Resolution								
1024 signal periodes per revolution								
Output signals 2 sinusoidal signals A and B each with inverted	signals							
NG: Option reference pulse with inverted sign	nal							
Inner diameter								
(by hollow shaft design)								
20 P (standard) P: feather key 16 P, 19P, (optional)								
16 K, 25 K (optional K: clamping								
Blind hollow shafts with inch dimensions (A				sional s	system)			
0.375R R: clamping with clamping ring 0.500R	without fea	ther ke	әу					
0.625R								
0.750R								
0.875R								
1.000R								

4 Transport, packaging and storage

4.1 Safety instructions for transport

CAUTION!

Material damage caused by improper transport!

Observe the symbols and information on the packaging:

- Do not throw risk of breakage
- Keep dry
- Do not expose to heat above 40 °C or direct sunlight.

4.2 Incoming goods inspection

Check delivery immediately upon receipt for completeness and possible transport damage. Inform the forwarder directly on receipt of the goods about existing transport damages (prepare pictures for evidence).

4.3 Packaging / disposal

The packaging is not taken back and must be disposed of in accordance with the respective statutory regulations and local guidelines.

4.4 Storage of packages (devices)

Keep dry

Keep packages dry and free from dust; protect from moisture.

Protect against heat

Protect packages from heat above 40 °C and direct sunlight.

If you intend to store the device for a longer period of time (> 6 months) we recommend you use protective packaging (with desiccant).

NOTES!

Turn the shaft of the device every 6 month to prevent the bearing grease solidifying!

5 Installation and commissioning

5.1 Safety instructions NOTES!

Observe the safety instructions contained in **Chapter 2** when installing or working on the device!

Personnel

Installation and commissioning must be carried out by skilled technical staff only.

5.2 Technical information

NOTES!

Do not use a hammer or similar tool when installing the device due to the risk of damage occurring to the bearings or coupling!

Ambient temperature

The max. permissible ambient temperature depends on the speed and degree of protection of the device, the signal frequency, the length of the signal cable and the place of installation (please refer to Chapter 3.2).

Degree of protection

To fulfil degree of protection requirements the diameter of the connection cable must correspond to that of the cable gland (please refer to Chapter 10 Dimension drawings)!

Deep groove ball bearings

FGH 40 incremental hollow- shaft encoders are fitted with maintenance-free, greased "for-life" deep groove bearings. Bearings must be changed by the manufacturer only. Opening the encoder renders the guarantee null and void.

Screw retention

We recommend using Loctite[®] 243 thread locker (medium strength) on all fastening screws to prevent loosening.

5.3 Required tools

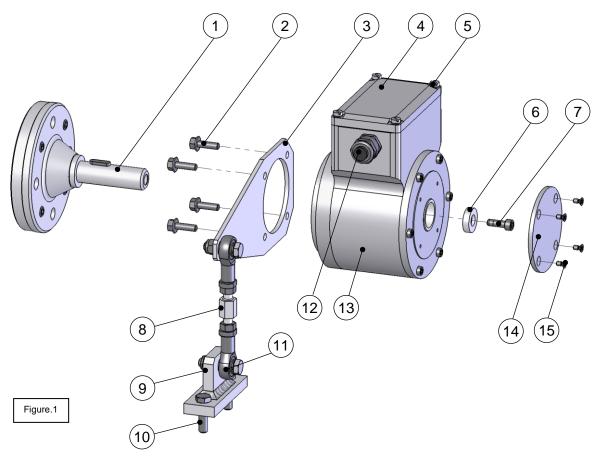
Spanners:

10 mm, 14 mm, 22 mm, 24 mm

- Allen keys:
- 3, 4 and 5 mm
- Flat-blade screwdrivers:
- Assembly grease
- Loctite[®] 243
- (medium strength thread locker)

5.4 Mounting preparations

1. Ensure all accessories are available (please refer to Chapter 10 Dimension drawings).


NOTES!

Fastening screws and earth cable are not included in the range of supply.

2. Preparing the place of attachment: Clean the (motor) shaft, centering, bolting surfaces and fastening threads; check for damage. Repair any damage!

5.5 Mounting hollow-shaft type FGH 40

5.5.1 Standard (type P with feather key, type K with clamping without feather key)

1. Mount adapter shaft (1) and align using dial gauge.

NOTES!

The maximum radial run-out of the adapter shaft is 0.05 mm.

If necessary, use the ball thrust adjustment screw to align the adapter shaft. Secure ball thrust screws with Loctite[®] 243. Remove unused ball thrust screws or secure with Loctite[®] 243. Max. tightening torque for M12 approx. 25 Nm, for M16 approx. 35 Nm.

Use parallel keys to DIN 6885.

Please also observe the supplement data sheet Mounting accuracy for hollow shaft encoders.

You should also observe the Installation instructions supplied with the adapter shaft when installing!

- 2. Lightly grease the adapter shaft.
- 3. Secure the torque bracket (3) to the hollow-shaft device (13) with 4 tensilock screws (2).

NOTES!

When fitting to the device is possible to align the torque bracket in four different directions. If possible fit the device in a manner that ensures the cable gland points downwards! Exchange the position of the cable gland (12) and the blanking plug on the opposite side, if necessary.

- 4. Mount the hollow-shaft device to the adapter shaft.
- 5. Secure the hollow-shaft device with the aid of the axial tensioning disc (6) and a hexagon socket head cap screw (7).

NOTES!

The axial tensioning disc is supplied with several hexagon head socket cap screws of different lengths. To select the suitable hexagon head socket cap screw please refer to the dimensioning drawings in Chapter 10.

The hexagon head socket cap screws are coated with a microencapsulated adhesive as locking agent.

- 6. Fit the cover (14) and secure with four countersunk screws (15) to seal the hollow-shaft device.
- 7. Fastening the torque bracket:

Fastening without base plate:

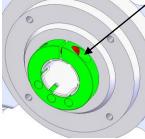
Secure the link rod head (11) of the link rod (8) to a fixed point (for example on the motor housing).

Fastening with base plate:

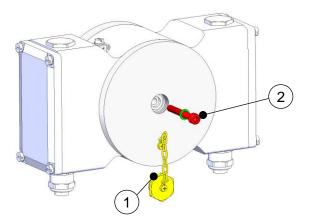
Secure the base plate (9) to a fixed point with two hexagon head screws (10) - (for example on the motor housing or the foundations).

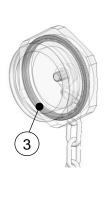
NOTES!

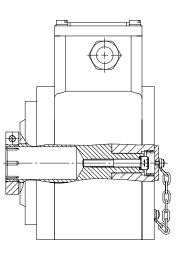
Once fitted the link rod must rotate easily around the link rod heads! Failure to observe this point may result in damage to the bearings!


NOTES!

The link heads are maintenance free. However, ensure they remain free from soiling and paint!


5.5.2 Hollow shaft with clamping ring and blind hole (type R with inch dimensions)


Tighten the clamping ring only <u>after assembly</u> by means of the clamping screw in order to prevent deformation of the hollow shaft.



Tightening torque clamping screw:

ISO 4762 - M4 x 14 - A2-70	2,5	5 Nm
ISO 4762 - M5 x 16 - A2-70	5	Nm

- 1. Loosen screw plug (1)
- 2. Mounting according to chapter 5.5.1 point 1 to point 4
- 3. Screw in the enclosed M6 cap screw with sealing ring (2) **Tightening torque: 8.5 Nm**
- 4. Check: O-ring 25 x 2 [FKM] present (3) Screw the screw plug back in (1)

5.6 Dismantling

5.6.1 Safety instruction

Personnel

Dismantling must be carried out by skilled technical staff only.

WARNING!

Observe the safety instructions contained in Chapter 2 when dismantling the device!

NOTES!

Do not use a hammer or similar tool when installing the device due to the risk of damage occurring to the bearings or coupling!

5.6.2 Dismantling hollow- shaft type FGH 40

Disconnect all electrical cable prior to beginning any work. To dismantling the encoder follow the instructions given in Chapter 5.5 in the reverse order.

NOTES!

Use the withdrawal device D-53663a (available as an accessory) if you are unable to remove the device manually from the adapter shaft after having removed the axial tensioning disc)!

Special tool Withdrawal device D-53663a (type P and type K)

Using the withdrawal device, which is screwed into the withdrawal thread M25 x 0.75 of the hollow shaft allows you to remove the overspeed switch from the adapter shaft without risking damage to the bearings.

Hollow shaft with blind hole and clamping ring (type R): Use screw / threaded rod M6 for forcing (L= min. 125 mm).

5.7 Electrical connection and start up

NOTES!

You must observe applicable EMC guidelines when routing cables!

C)
5	-
	L

٦

NOTES for UL and CSA!

Do only use copper cables

5.7.1 Preparing cables

- 1. Strip cable insulation.
- 2. Crimp wire-end ferrules.

5.7.2 Electrical connection

1. Open the terminal box cover (16).

CAUTION!

Do not allow moisture to enter the terminal box when the cover is open!

- 2. Remove the cap of the cable gland (12, Fig.1).
- 3. Feed the cable into the terminal box trough the cable gland.

NOTES!

The signal cable shielding can be connected directly to the housing via the EMC cable gland. A coil spring intergrated in the cable gland ensures all-round contact is made with the bare cable shielding to ensure a good shield connection. This type fo shield connection should be preferred.

Alternatively, if equipotential boning currents are anticipated it is possible to connect the cable shielding to a shield terminal in the terminal box. A capacitor between the shield terminal and the encoder housing prevents the flow of equalizing current.

To achieve an effective shielding the cable shield must also be connected in the electrical cabinet.

4. Tighten the cable gland and blanking plugs using a spanner.

\bigcirc	
\leq	

NOTES!

Prior to delivery cable glands and blanking plugs are tightened finger tight only. To ensure that the terminal box is reliably sealed tighten all cable glands and blanking plugs before starting up for the first time.

5. Use a spanner to tighten the cable gland until the cable is securely clamped and properly sealed.

of protection of the cable gland.

6. Connect the supply voltage and signal cable (please refer to the connection diagrams, Chapter 11).

Prevent lateral pulling forces acting on the cable and plugs so as not to impair the degree

CAUTION!

NOTES!

Do not apply supply voltage to the signal outputs, as this will destroy the device!

7. Applicable to alternative shield connection only: fit cable lug to cable shield and connect to the shield terminal (please refer to the connection diagrams, Chapter 11).

NOTES!

To achieve a good shielding effect the cable shield be kept as short as possible.

8. Close the terminal box cover.

NOTES!

Before closing the terminal box cover check and if necessary clean both seal surfaces and the gasket.

•

CAUTION!

Ensure when closing the terminal box cover that no cable becomes jammed.

9.Secure earth cable to earth terminal.

6 Faults

6.1 Faults table

Faults Possible cause		Remedy	
	Soiled terminal box gasket or seal surfaces	Clean terminal box gasket and seal surfaces	
	Damaged terminal box gasket	Replace terminal box gasket	
Moisture in the terminal box	Cable gland/blanking plug not tightened	Tighten cable gland/blanking plug	
	Unsuitable cable for cable gland	Use suitable cable and cable glands	
No output signals	Supply voltage not connected	Connect supply voltage	
	Connection cable reversed	Wire correctly	
	Unsuitable cable	Use data cable with conductors arranged as twisted pairs and common shield	
Output signals subject to interference	Cable shield not connected	Connect cable shield at both ends	
	Cable routing not EMC compliant	Observe applicable EMC guidelines when routing cables	
	Signal and stage overlanded	Check pin assignment; observe connection diagram	
Signal interruptions	Signal end stage overloaded	Do not assign unused outputs	
	Outputs short-circuited	Do not connect outputs with supply voltage or GND	

Contact Hübner-Service (page 2) if none of the remedies listed above provides a solution)!

7 Inspections

7.1 Safety instructions

WARNING!

Skilled technical staff only are permitted to inspect the device and its installation. Observe the safety instructions contained in **Chapter 2** when inspecting or working on the device!

7.2 Maintenance information

The device is maintenance-free. However, to guarantee optimum fault-free operations we recommend that you carry out the following inspections.

7.3 Inspection schedule

Interval	Inspections
	Ensure the fastening screws are properly tightened
Yearly	Ensure cable connections and connection terminals are securely seated
Following approx 16 000 20 000 hours of operation / higher levels of continuous load	Check deep groove ball bearings are running smoothly and listen for running noises

8 Disposal

8.1 Disposal procedure

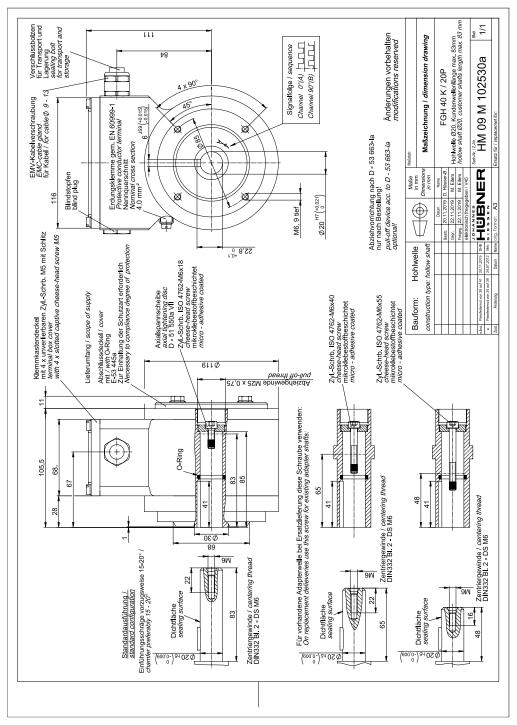
The manufacturer is not obliged to take back the device.

The device is classed as electronic equipment and subject to the WEEE Directive; observe local, country-specific laws when disposing of the device.

For information on environmentally sound disposal please contact your local authority or a specialist disposal company.

9 Spare Parts

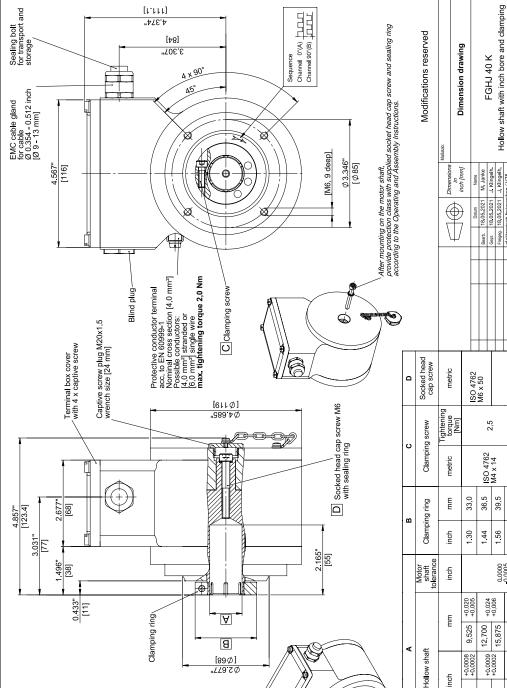
The in the following listed spare parts can be covered when required about the service address on the page 2.


Spare part	Remark			
Cover	Cover of the hollow- shaft bore (non drive end)			
Cable gland	M20 x 1,5			
Terminal box cover	Incl. Sealing and screws			

10 Dimension drawings

Further dimension drawings on our website or on request.

10.1 Construction type hollow- shaft



Hollow- Shaft Ø 20, length of customer shaft max. 83 mm

HM 09 M 102530a

FGH 40 K../20 P Gew

FGHJ 40 K

Hollow shaft with inch bore and

clamping

[1111] 4324"

[78]

3 302

11

²³ HM 21 M116504

HUBNER

Datum

Bunapu

ISO 4762 M6 x 45

ß

ISO 4762 M5 x 16

46,0 48,5

1.81 1.67

+0,028 +0,007

22,225 25,400

-

+0.0011

3/4" 7/8"

0.875R

1/2" 3/8"

0.375R 0.500R 0.625R 0.750R 1.000R

Type

5/8"

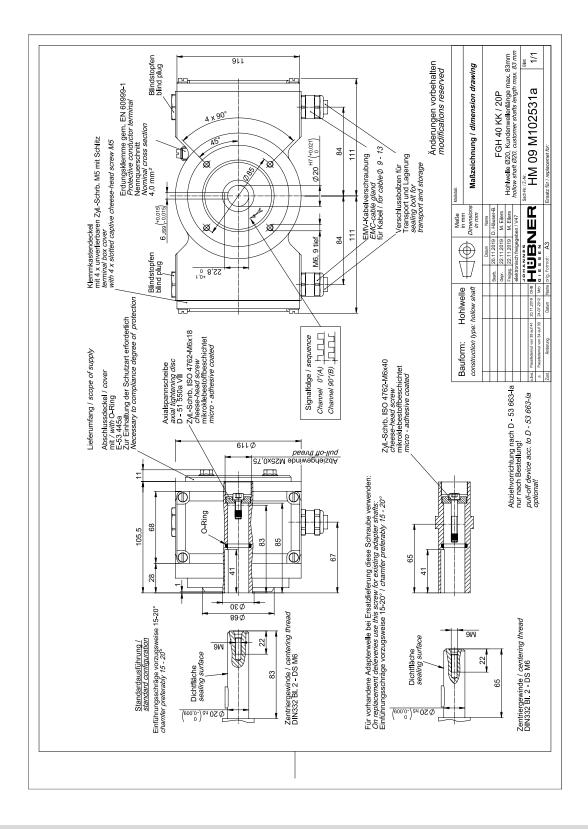
19,050

42,5

39,5

1.56

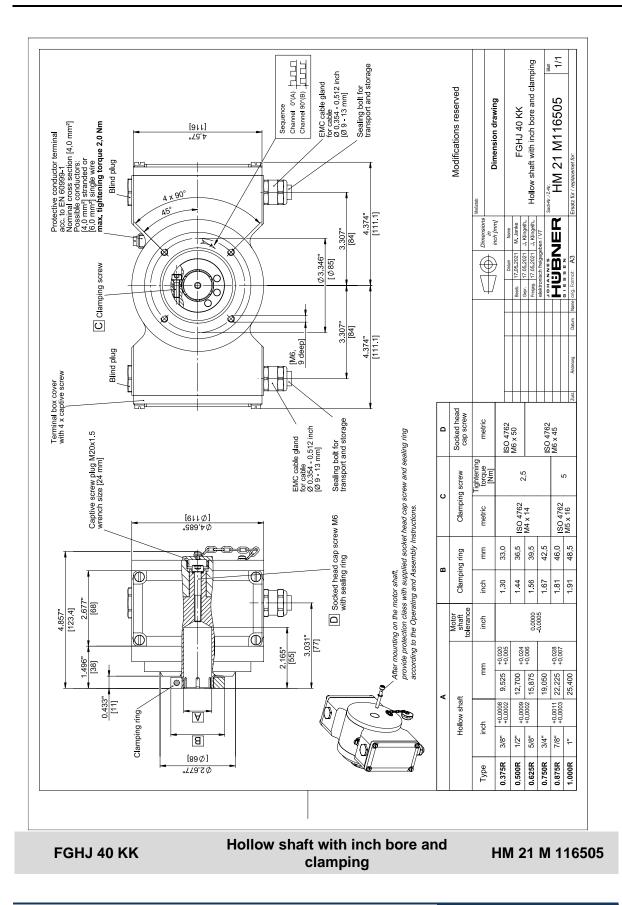
0.0000


reigeg.

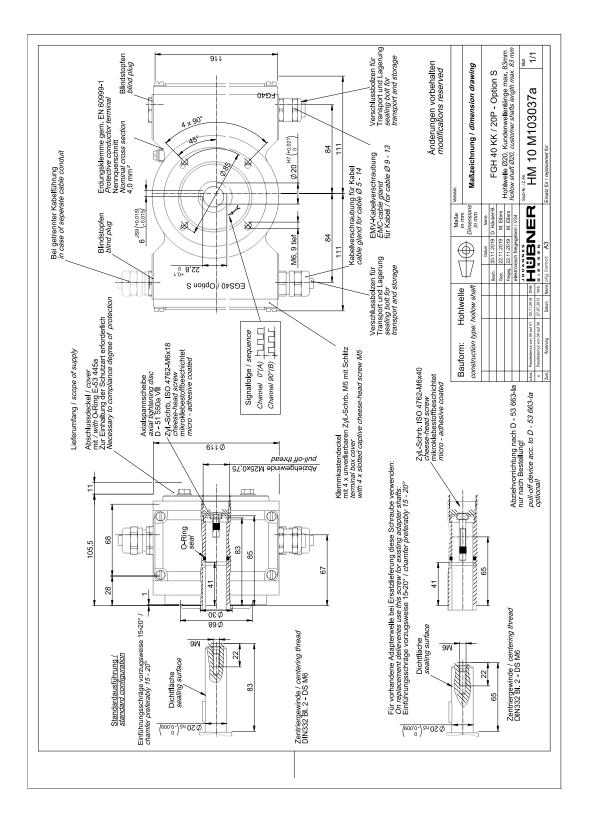
Bit

Hollow shaft with inch bore and clamping

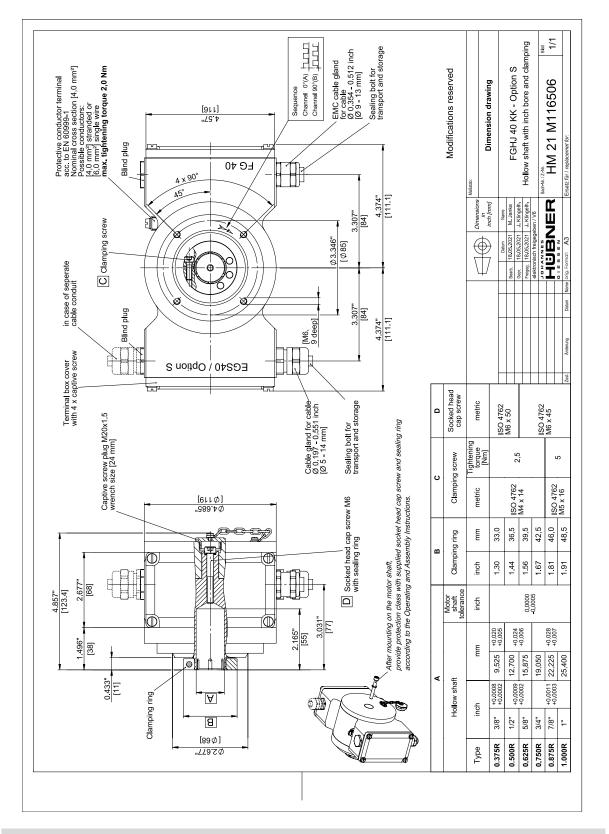
HM 21 M 116504



FGH 40 KK../20 P Gew

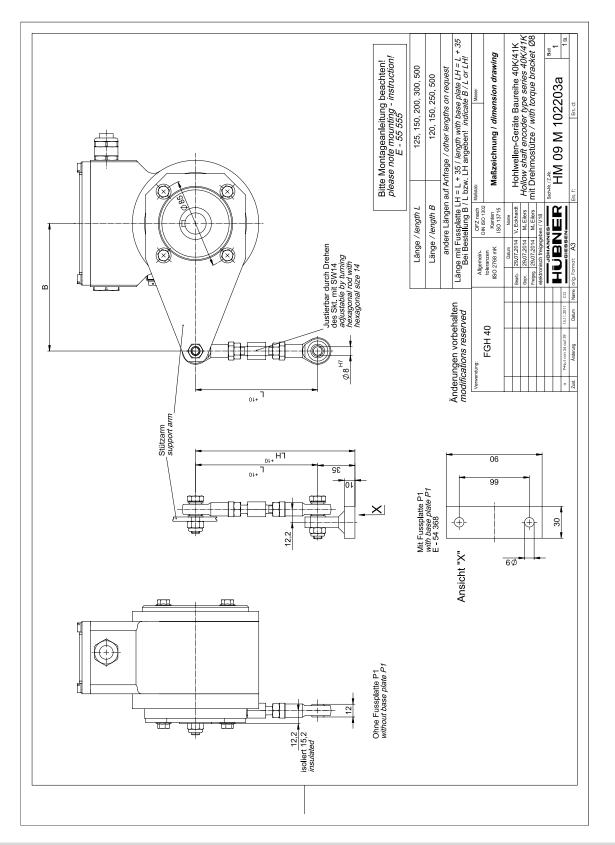

Hollow- Shaft Ø 20, length of customer shaft max. 83 mm

HM 09 M 102531a



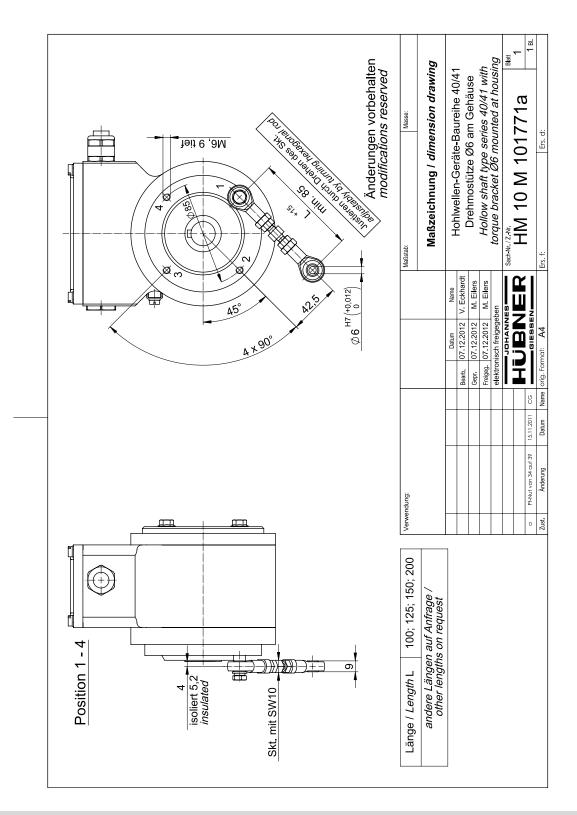
Redundant version or with integrated option S

HM 10 M 103037a



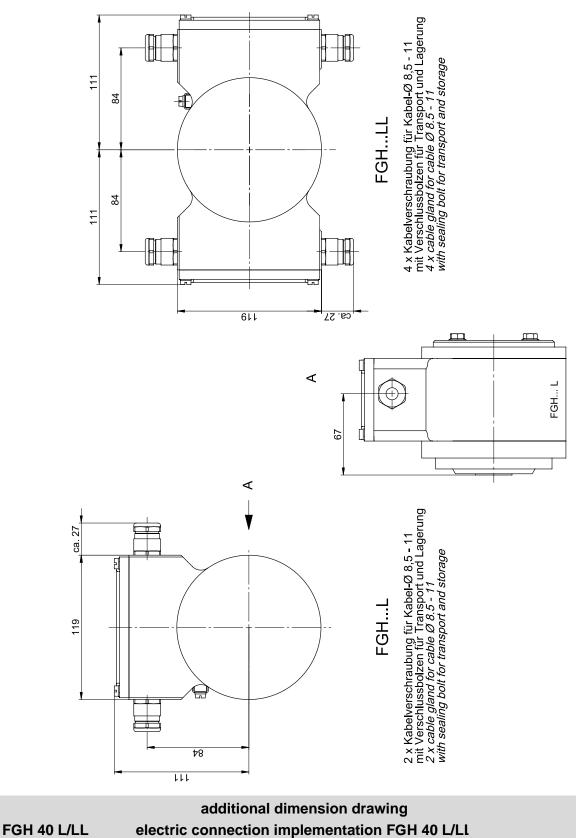
FGHJ 40 KK – Option S

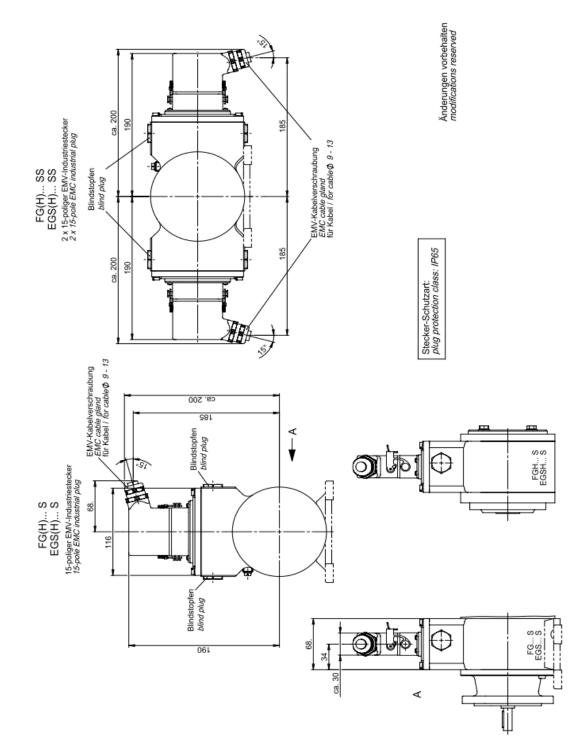
Hollow shaft with inch bore and clamping


HM 21 M 116506

Assembly with torque bracket

HM 09 M 102203a




Assembly with torque bracket

HM 10 M 101771a

fiber optic

11 Connection diagrams

		nmkasten ninal box	Anschlussplan PN109-400 Connection diagram PN109-400			
Shielding: The shield of the signal cable can be connected		0V	GND	GND Power Supply		
directly to the housing of the encoder by the cable gland. Alternatively the shield of the signal cable can be connected to K11 via a capacitor(10nF / 500V) to the housing of the encoder.	2	1230V	Versorgungsspannung Inkr. Ausgang 0°	Incr. Output 0°		
	4	0°	Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse		
		90°	Inkr. Ausgang 90°	Incr. Output 90°		
		90°	Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse		
		N	Nullimpuls	Reference		
	8	N	Nullimpuls Invers	Reference Inverse		
		ERR	Fehlerausgang (Low aktiv)	Error Output (Low active)		
K11 "	10	ERR	Fehlerausgang (High aktiv)	Error Output (High active)		

FGH 40

Γ

10 pole printed circuit spring terminal block

3 4 5 6 7 8 9

2

Σ

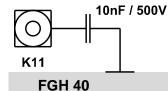
10

E IE

1

K11

Standard	
----------	--

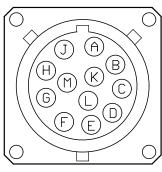

Terminal box

Klen	nmkasten	Anschl	ussplan PN1	09-401			
Tern	ninal box	Conne	nnection diagram PN109-401				
1	0V		GND	GND			
2	1230V		Versorgungsspannung	Power Supply			
3	0°		Inkr. Ausgang 0°	Incr. Output 0°			
4	0°		Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse			
5	90°		Inkr. Ausgang 90°	Incr. Output 90°			
6	90°		Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse			
7	-		nicht belegt	not connected			
8	-		nicht belegt	not connected			
9	ERR		Fehlerausgang (Low aktiv)	Error Output (Low active)			
10	ERR		Fehlerausgang (High aktiv)	Error Output (High active)			

Connection data: wire section 0,2-1,5 [mm²]

type Phoenix ZFKDS

Alternative Shielding



Standard without reference pulse

Terminal box

Socket insert view

Crimp contacts for cross-sectional data of wire from 0,52 up to 1,5 mm²

Shield:

The shield of the signal cable is directly to be connected with the socket housing.

Crimping tool: Burndy® No. MR 8 GE 5

	ndy-St ndy pli			Iussplan PN109-410 ection diagram PN109-410				
1	A	0V		GND	GND			
2	В	1230V		Versorgungsspannung	Power Supply			
3	С	0°		Inkr. Ausgang 0°	Incr. Output 0°			
4	D	0°		Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse			
5	Е	90°		Inkr. Ausgang 90°	Incr. Output 90°			
6	F	<u>90°</u>		Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse			
7	G	N		Nullimpuls	Reference			
8	н	N		Nullimpuls Invers	Reference Inverse			
9	J	ERR		Fehlerausgang (Low aktiv)	Error Output (Low activ)			
10	к	ERR		Fehlerausgang (High aktiv)	Error Output (High activ)			
11	L	-		nicht belegt	not connected			
12	12 M -		nicht belegt	not connected				

FGH 40

Connection cable

6x2x0,56 twin-standard, shielded

Type: HE-2LVCC-CY AWG 20b acc. to VDE 0881

Cross-section: 0,56 mm² Temperature: -20 °C to + 105 °C Outside dia: 10,1 mm

shield is connected to casing

other cables- / temperature ranges on request

Ans	chluss	kabel		An	schlus	splan F	PN109-420			
Con	nectio	n cable		Co	Connection diagram PN109-420					
1	А	$\infty \propto$	schwarz	black	0V		GND	GND		
2	В		rot	red	1230V		Versorgungsspannung	Power Supply		
3	С	∞	orange	orange	0°		Inkr. Ausgang 0°	Incr. Output 0°		
4	D		schwarz	black	0°		Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse		
5	Е	∞	blau	blue	90°		Inkr. Ausgang 90°	Incr. Output 90°		
6	F		schwarz	black	<u>90°</u>		Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse		
7	G	∞	gelb	yellow	N		Nullimpuls	Reference		
8	н		schwarz	black	N		Nullimpuls Invers	Reference Inverse		
9	J	∞	grün	green	ERR		Fehlerausgang (Low aktiv)	Error Output (Low activ)		
10	к		schwarz	black	ERR		Fehlerausgang (High aktiv)	Error Output (High activ)		
11	L		-	-	-		nicht belegt	not connected		
12	м		-	-	-		nicht belegt	not connected		

FGH 40

Standard

Standard

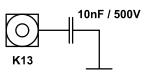
Connection cable

Burndy[®] plug

Klemmkasten

Terminal box

M -	F	F	F	F	F	F	F	F	F	F	F
1	2	3	4	5	6	7	8	9	10	11	12


12 pole printed circuit spring terminal block type Phoenix ZFKDS

Connection data: Wire section 0,2-1,5 [mm²]

Shielding:

The shield of the signal cable can be connected directly to the housing of the encoder by the cable gland. Alternatively the shield of the cable can be connected to K13 via a capacitor (10nF / 500V) to the housing of the encoder.

Alternative Shielding

GND GND 1 0V2 12...30V Versorgungsspannung Power Supply 3 0° Inkr. Ausgang 0° Incr. Output 0° Inkr. Ausgang 0° Incr. Output 0° <u>0°</u> 4 Invers Inverse 90° Inkr. Ausgang 90° Incr. Output 90° 5 Inkr. Ausgang 90° Incr. Output 90° <u>90°</u> 6 Invers Inverse 7 Ν Nullimpuls Reference Nullimpuls Reference 8 N Invers Inverse Error Output (Low active) Fehlerausgang (Low aktiv) ERR 9 Error Output (High active) Fehlerausgang (High aktiv) 10 ERR 11 2F Option 2F Option 2F Option 2F Option 2F 2F 12 invers inverse

Anschlussplan

Connection diagram PN109-430

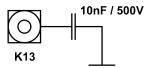
FGH 40

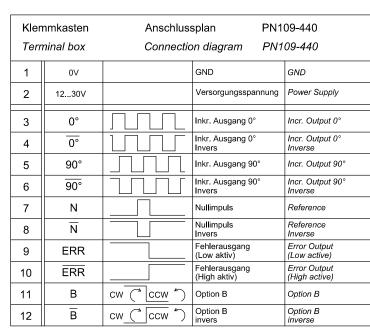
Option F2

Terminal box

PN109-430

F	F	F	F	F	F	F	F	F	F	F	
1	2	3	4	5	6	7	8	9	10	11	12


10 pole printed circuit spring terminal block type Phoenix ZFKDS


Connection data: Wire section 0,2-1,5 [mm²]

Shielding:

The shield of the signal cable can be connected directly to the housing of the encoder by the cable gland. Alternatively the shield of the cable can be connected to K13 via a capacitor (10nF / 500V) to the housing of the encoder.

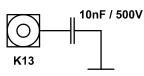
Alternative Shielding

FGH 40

Option B

Terminal box

F	F	F	F	F	F	F	F	F	F	F	F
1	2	3	4	5	6	7	8	9	10	11	12


12 pole printed circuit spring terminal block type Phoenix ZFKDS

Connection data: Wire section 0,2-1,5 [mm²]

Shielding:

The shield of the signal cable can be connected directly to the housing of the encoder by the cable gland. Alternatively the shield of the cable can be connected to K13 via a capacitor (10nF / 500V) to the housing of the encoder.

Alternative Shielding

FGH 40

Option B2

Klemmkasten

Terminal box

1

2

3

4

5

6

7

8

9

10

11

12

0V

12...30V

0°

0°

90°

<u>90°</u>

Ν

N

ERR

ERR

B3

B3

cw

CW

CCW

ccw

Klen	nmkaste	n Anschluss	ssplan PN109-450				
Tern	ninal box	c Connectic	tion diagram PN109-450				
1	0V		GND	GND			
2	1230V		Versorgungsspannung	Power Supply			
3	0°		Inkr. Ausgang 0°	Incr. Output 0°			
4	0°		Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse			
5	90°		Inkr. Ausgang 90°	Incr. Output 90°			
6	90°		Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse			
7	N		Nullimpuls	Reference			
8	N		Nullimpuls Invers	Reference Inverse			
9	ERR		Fehlerausgang (Low aktiv)	Error Output (Low active)			
10	ERR		Fehlerausgang (High aktiv)	Error Output (High active)			
11	B2	CW (* CCW *) Stop	Option B2	Option B2			
12	B2	CW (CCW Stop	Option B2 invers	Option B2 inverse			

Terminal box

Anschlussplan

Connection diagram

GND

Invers

Invers

Invers

Nullimpuls

Nullimpuls

Fehlerausgang (Low aktiv)

Fehlerausgang (High aktiv)

Option B3

Option B3

invers

Versorgungsspannung

Inkr. Ausgang 0°

Inkr. Ausgang 0°

Inkr. Ausgang 90°

Inkr. Ausgang 90°

PN109-460

PN109-460

GND

Power Supply

Incr. Output 0°

Incr. Output 0°

Incr. Output 90°

Incr. Output 90°

Inverse

Inverse

Reference

Reference

Error Output (Low active)

Error Output (High active)

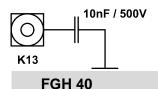
Option B3

Option B3

inverse

Inverse

F	F		F	F		F	F	F	F	F	
1	2	3	4	5	6	7	8	9	10	11	12
		\square									\square


10 pole printed circuit spring terminal block type Phoenix ZFKDS

Connection data: Wire section 0,2-1,5 [mm²]

Shielding:

The shield of the signal cable can be connected directly to the housing of the encoder by the cable gland. Alternatively the shield of the cable can be connected to K13 via a capacitor (10nF / 500V) to the housing of the encoder.

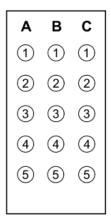
Alternative Shielding

Option B3

Terminal box

				2 pol. Print-Zugfederklemme Typ Phoenix ZFKDS 2 pole printed circuit spring terminal block type Phoenix ZFKDS	Anschlussdaten: Connection data: Aderquerschnitt wire section 0.2-1,5 [mm²] 0.2-1.5 [mm²]				Anschlussdaten:Connection data:ST-SteckverbinderST connectorST-SteckverbinderST connector1 Glasfaser 50/125µm1 Fibre optic cable 50/125µmoderor1 Glasfaser 62,5/125µm1 Fibre optic cable 62.5/125µm		
PN109-470	09-470	2		able			г (4,7nF / 250V AC)		5		
PN1	gram PN1	Power Supply	GND	Fibre Optic Cable			rerschraubung A Kondensator		gland. connected to k of the encodei		
Anschlussplan	Connection diagram PN109-470	Versorgungsspannung	GND	Lichtwellenleiter			Der Schirm der Signalleitung kann über die Kabelverschraubung direkt mit dem Gehäuse verbunden werden. Alternativ kann der Kabelschirm an K11 über einen Kondensator (4,7nF / 250V AC) mit dem Gebergehäuse verbunden werden.		The shield of the signal cable can be connected directly to the housing of the encoder by the cable gland. Alternatively the shield of the signal cable can be connected to K11 via a capacitor (4.7 nF/ 250 VAC) to the housing of the encoder.	Alternativer Schirmanschluss Alternative Shielding	4,7nF / 250V AC
Klemmkasten	Terminal box	1230V DC	0V	LWL		:bunu	m der Signalleit dem Gehäuse v kann der Kabel 3ebergehäuse v	ing:	d of the signal c. the housing of ely the shield of acitor (4.7nF / 2	Alternativer Schirmaı Alternative Shielding	4,7nF
Klen	Tern	-	2	ε		Schirmung:	Der Schli direkt mit Alternativ mit dem (Shielding:	The shiel directly tu Alternativ via a cap	Alterná Alterná	\bigcirc

Connection sheme PN 109-470


Terminal box

K11

Ansicht auf Steckdoseneinsatz

Socket insert view

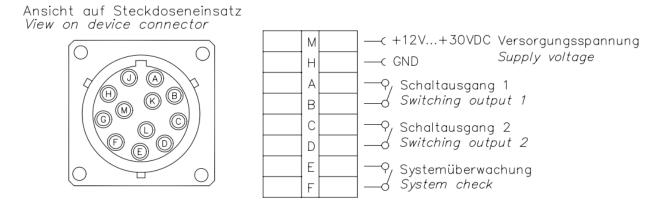
Anschlussdaten: Crimpkontakte für Drahtquerschnitte 0,75-1,0 [mm²]

Connection data: Crimp contacts for cross-Sectional data of wire 0.75-1.0 [mm²]

EN	EMV-Industriestecker Anschlussplan PN109-415									
EN	AC industrial	plug Connection of	Connection diagram PN109-415							
C5	0V		GND	GND						
A5	1230V		Versorgungsspannung	Power Supply						
A1	0°		Inkr. Ausgang 0°	Incr. Output 0°						
A2	0°		Inkr. Ausgang 0° Invers	Incr. Output 0° Inverse						
A3	90°		Inkr. Ausgang 90°	Incr. Output 90°						
A4	90°		Inkr. Ausgang 90° Invers	Incr. Output 90° Inverse						
вз*	N		Nullimpuls	Reference						
в4*	N		Nullimpuls Invers	Reference Inverse						
B5	ERR		Fehlerausgang (Low aktiv)	Error Output (Low active)						
C3	ERR		Fehlerausgang (High aktiv)	Error Output (High active)						
C1 [*]	2F		Option 2F	Option 2F						
C2*	2F		Option 2F invers	Option 2F inverse						
C1*	В	cw (* ccw *)	Option B	Option B						
C2*	B	cw 🕻 ccw)	Option B invers	Option B inverse						
C1*	B2	cw (* ccw) stop	Rechtslauf	clock wise						
C2*	B2	cw_(_ccw)stop_	Linkslauf	counter clock wise						

Schirmung:

Der Schirm der Signalleitung muss über die Kabelverschraubung direkt mit dem Gehäuse verbunden werden.


Shielding:

The shield of the signal cable has to be connected directly to the housing of the encoder by the cable gland.

FGH 40

Connection sheme PN 109-415

EMC industrial plug

optional je nach Ausführung

depending on options

Crimpkontakte für Drahtquerschnitte 0,52 bis 1,5 mm Crimping tool: Burndy No. MR 8 GE 5

FGH 4	0
-------	---

Connection sheme 649 Option S

Burndy® plug

			F						
1	2	3	4	5	6	7	8	9	10

10 pol. Print-Zugfederklemme Typ Phoenix ZFKDS 10 pole printed circuit spring terminal block type Phoenix ZFKDS

Anschlussdaten:

Aderquerschnitt 0,2-1,5 [mm²]

Connection data: wire section 0.2-1.5 [mm²]

	nmkasten ninal box		lussplan PN148-400b action diagram PN148-400b				
1	0V		GND	GND			
2	530V DC		Versorgungsspannung	Power Supply			
3	A+	$\overline{\mathbf{M}}$	Ausgang A+	Output A+			
4	A-	\frown	Ausgang A- Invers	Output A- Inverse			
5	B+	\sim	Ausgang B+	Output B+			
6	B-	\mathcal{M}	Ausgang B- Invers	Output B- Inverse			
7	N		Nullimpuls	Reference			
8	N		Nullimpuls Invers	Reference Inverse			
9	ERR		Fehlerausgang (Low aktiv)	Error Output (Low active)			
10	ERR		Fehlerausgang (High aktiv)	Error Output (High active)			

FGH 40

Connection sheme PN 148 400b

Sinue /Cosine Output