English

Operating and assembly instructions

UO-ECU or UO-ECU-G Standard Control Unit

U-ONE[®]-LWL Universal encoder system – Generation II

Read the operating and assembly manual before assembly, before starting installation and before completing all other work! Store the manual for future use.

Manufacturer / author

Johannes Hübner	Phone:	+49 641 7969 0
Fabrik elektrischer Maschinen GmbH	Fax:	+49 641 73645
Siemensstr. 7	Website:	www.huebner-giessen.com
35394 Giessen / Germany	E-Mail:	info@huebner-giessen.com

Further current information on this product series is available online in our Service Point.

Just scan the QR code and open the link in the browser.

These instructions and the enclosed declaration of conformity can also be accessed via our Service Point. For this purpose, the QR code on the type plate of the corresponding device must be scanned.

Trademark

Brand and product names are trademarks or registered trademarks of their respective owners.

Protected trademarks $^{\text{TM}}$ or $^{\text{R}}$ are not always designated as such in this manual. However, this does not mean that they may be used freely.

Copyright protection

This operating and assembly manual, including the figures it contains, are copyright protected. Third party usage of this operating and assembly manual in deviation from copyright regulations is prohibited. The reproduction, translation or electronic and photographic archiving and amendment of this manual shall require written approval by the manufacturer. Violations will result in claims for damages.

Copyright © Johannes Hübner Fabrik elektrischer Maschinen GmbH

Reservation of rights

This operating and assembly manual has been prepared carefully. However, it may contain formal errors or errors in content.

All rights reserved.

Table of contents

1	Ger	neral information	. 5
	1.1	Information on the Operating and assembly manual	. 5
	1.2	Scope of delivery	. 5
	1.3	Explanation of symbols	. 5
	1.4	Warranty and liability	. 6
	1.5	Organisational measures	. 6
	1.6	Copyright protection	. 6
	1.7	Warranty provisions	. 6
	1.8	Customer service	
2	Bas	sic safety information	
	2.1	Responsibility of the operator	. 7
	2.2	Selecting and qualifying personnel; basic obligations	. 7
	2.3	Proper use	. 7
	2.4	Improper use	. 8
	2.5	Safety information	
3	Ass	sembly	
	3.1	Safety information	
	3.2	Basic regulations	
	3.3	Replacing function modules	
4		hnical data and functions	
	4.1	Type plate	
	4.2	Type designation	
		Electrical data	
		3.1 Operating statuses and displays	
		Error output	
	4.5	Status output	
	4.6	Reset input	
	4.7	Preset input	
		Calculation of speed switching points	
		8.1 Precision of speed switching points	
		Calculation of position switching points	
		9.1 Precision of position switching points	
		Control signal for error relay	
		Incremental output (not safety-related)	
		11.1 Electrical data Incremental output	
		Power output 4 – 20 mA (not safety-related)	
		12.1 Current value from the speed value	
E		12.2 Current value based on the difference of the two position values	
J	Ins 5.1	pections Maintenance information	
	••••	Error table	
e			
Ø		nsportation, packaging and storage	
	6.1	Transportation safety information	17

UO-ECU or UO-ECU-G Operating and assembly instructions

	6.2	Incoming goods controlling	17
		Packaging (disposal)	
		Storing packages (devices)	
		Returning equipment (repair/goodwill/warranty)	
		Disposal	
7	Doo	cuments	18
	7.1	Dimensional drawing for the ECU and SCU function modules	18
	7.2	Connection diagrams	19

1 General information

1.1 Information on the Operating and assembly manual

This operating and assembly manual provides important information on how to use the UO-ECU electronic function module. It must be read carefully before beginning any work and must be observed. The UO-ECU electronic function module is called the ECU in the following documentation.

Furthermore, local accident prevention regulations and general safety regulations applicable in the area where the device is used must be observed.

1.2 Scope of delivery

The scope of delivery for the function module includes the operating and configuration manual.

The scope of delivery for the ECU also includes the software & support CD and the USB programming cable.

1.3 Explanation of symbols

Warning information is designated using symbols. Information is proceeded by signal words which express the extent of the danger involved. Always comply with these notices, and use caution to avoid accidents, personal injury and property damage.

WARNING!

Indicates a potentially hazardous situation that could lead to death or severe injury if it is not avoided.

CAUTION!

Indicates a potentially hazardous situation that could lead to minor or slight injuries if it is not avoided.

CAUTION! Indicates a potentially hazardous situation that could lead to property damage if it is not avoided.

Î	NOTE!
25	Emphasises useful tips and recommendations, and provides information useful for efficient, smooth operation.

1.4 Warranty and liability

Only the "General Terms and Conditions" of Johannes Hübner Fabrik elektrischer Maschinen GmbH apply. These will be provided to the operator at the latest when the order is confirmed or when the contract is concluded. All warranty and liability claims for personal injury and property damage are excluded, and the operator's operating permit will be null and void if one or more of the following apply:

- Failure to observe the operating and assembly manual.
- Improper use of the function module.
- Improper assembly, installation, commissioning and programming of the function module.
- Operating the function module despite technical defects.
- Independently carrying out mechanical or electrical modifications to function modules.
- Independently carrying out repairs.
- Catastrophes due to external interference or force majeure.
- Use of non-qualified personnel.
- Opening the function module.

1.5 Organisational measures

- The operating and assembly manual must always be stored easily within reach in the area where the function module is used.
- In addition to the operating and assembly manual, general statutory and other binding regulations on accident prevention and environmental protection must be observed.
 Operators must be trained on these regulations.
- Applicable national, local, and system-specific provisions and requirements must be observed.
- The operator is obligated to inform personnel of special operating considerations and requirements.
- The type plate and any prohibitions or notice signs adhered to the function modules must always be legible.
- Repairs may only be carried out by the manufacturer, or by an agency or individual authorised by the manufacturer.

1.6 Copyright protection

	NOTE!
Î	Content information, texts, drawings, images, and other illustrations are copyright protected and subject to industrial property rights. Copying of any kind not associated with use of the function module is prohibited without a written declaration from the manufacturer. Violations will result in claims for damages.

1.7 Warranty provisions

Warranty provisions are outlined in the manufacturer's General Delivery Conditions.

1.8 Customer service

Contact persons are available by phone, fax, or e-mail for technical questions. See the manufacturer's address on page 2.

2 Basic safety information

DANGER!

This section provides an overview of all significant safety aspects necessary to protect personnel and ensure safe, fault-free operation of the function module. Failure to observe this information may result in significant danger.

2.1 Responsibility of the operator

The function modules are used in a commercial capacity. The operator of the function modules, therefore, is subject to statutory occupational safety requirements and the safety, accident prevention and environmental regulations applicable to the areas in which the function modules are used.

2.2 Selecting and qualifying personnel; basic obligations

- All work on function modules may be carried out only by qualified personnel. Qualified
 personnel are personnel with the training, experience, and instruction, as well as
 expertise on relevant standards, specifications, accident prevention regulations and
 operating circumstances necessary to carry out the required work, and who have
 been authorised to do so by the persons responsible for the safety of the system.
 They are able to identify and avoid potential hazards.
- In addition, please see standards VDE 0105-100 and IEC 364 for the definition of "qualified personnel" (reference, e.g. Beuth Verlag GmbH, VDE-Verlag GmbH)
- Responsibilities for assembly, installation, commissioning and operation must be clearly defined. Personnel who are receiving instruction or training must be supervised.

2.3 Proper use

The UO-ECU function module must be used in conjunction with the UOL(H) 40 basic unit. Further function modules may be added depending on the application.

The system manufacturer must review whether the properties of the function module fulfil the safety requirements in its specific application. The system manufacturer is responsible for use of the function module and for deciding whether to use the module. Function modules are designed for unsupervised, continuous operation.

Proper use also includes:

- observing all information in this operating and assembly manual
- observing type plates and any prohibition or information signs
- observing the operating manual of the machine or system manufacturer.
- operating the function module within the limits stipulated in the technical data
- not engaging in improper use.

2.4 Improper use

	WARNING!		
	Danger of death, physical injury and property damage due to improper use of the function module! In particular, the following uses are prohibited:		
 Use in environments with an explosive atmosphere. Use in environments with radioactive radiation. 			
	 Use on ships. Use for modical purposes 		

• Use for medical purposes.

2.5 Safety information

WARNING! ATTENTION! NOTE! Destruction, damage or impact to the function of the function module. Only complete wiring work and only connect or disconnect electrical • connections when the module is powered down. Review any potential hazards due to interactions with other systems and devices currently installed in the surrounding area, or which are to be installed. The user is responsible for taking relevant measures. The power supply must be secured with a fuse appropriate for the diameter of • the intake line. Cables used must be suitable for the temperature range. • Defective function modules may not be operated. Opening function modules is prohibited. The type plates specify the technical properties of the function modules. If a • type plate is no longer legible, or if a type plate is missing entirely, the function module may not be operated. Contact Hübner service (see page 2).

2	NOTE! Disposal:
<u>]]</u>	If the function module needs to be disposed after its service life, applicable national regulations must be observed.

3 Assembly

3.1 Safety information

<u> </u>

WARNING!

- Assembly and disassembly may only be carried out by qualified personnel. Observe the safety information in section 2.
- In general, the requirements and acceptance conditions for the system as a whole must be observed.

DANGER! ATTENTION!

Danger of death, severe physical injury and/or property damage due to deactivating safety functions, caused by an unsecured shaft drive.

• In general, the requirements and acceptance conditions for the system as a whole must be observed.

3.2 Basic regulations

WARNING!

- The power supply used must fulfil the requirements of SELV and PELV (IEC 60364-4-41).
- Power and signal lines must be installed separately.
- Observe the manufacturer's information when installing converters, shielding on power lines between the frequency converter and motor.
- Ensure the energy supply is sufficient for the application.

3.3 Replacing function modules

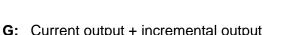
When replacing function modules, observe the following:

- The new function module must have the same item no. (ID) as the old one.
- The configuration of the function module to be replaced may be transferred to the new function module (see configuration instructions).
- When recommissioning the replaced function module, a secure test run must be completed first to ensure it functions correctly.

4 Technical data and functions

4.1 Type plate

The following image shows an example of a type plate.


Fig. 4-1: Type plate (example)

The type plate is located on the outside of the housing, and includes the following information:

- Manufacturer
- Type, year of construction
- CE mark
- Serial number (S/N)
- Protective class
- Supply voltage
- ID number
- Certification information

4.2 Type designation

ECU function module

•••	e an ente e atp at	•	indi di la di	

Label	Description	
ECU Control Unit (ECU) with • 2 digital inputs (reset and preset) and • 2 digital outputs (status and error)		
ECU-G	 Additionally: Current output 4 20 mA Incremental output with programmable division factor 1, 2, 4, 8 	

UO-ECU-G

4.3 Electrical data

Information	Value		
Supply voltage	12 V30 VDC in acc SELV/PELV	cordance with IEC 60364-4-41,	
Device temperature range	-25°C+ 60°C		
Power consumption	UO-ECU: UO-ECU-G:	< 3 W < 4 W	
Connection technology	Screw terminals 0.25	5 mm ² - 1.5 mm ² (see section 7.2)	
Programming interface	USB 2.0		
Preset input	Preset voltage low: Preset voltage high:		
Reset input	Reset voltage low: Reset voltage high:	0 V < U < 5 VDC 8 VDC < U < 30 VDC (Ri: approx. 32 kΩ)	
Error output, Status output	with current-limited, s Output voltage: HTL,	short-circuit resistant line drivers max. 50 mA at 24 V	
Protective class in accord- ance with DIN EN 60529	IP20 for cabinet insta Degree of protection		
Elevation above sea level ≤ 3000 m			

4.3.1 Operating statuses and displays

Operating status	Status LED	Output Status (HTL)	Output Error (HTL)
Start	flashing yellow/green 2 Hz	Low	Low
Normal	Green	High	High
Module not configurable	Yellow Low Hig		High
Configure the module	Flashing yellow/green 1 Hz	Changing 1 Hz	High
Test	Flashing yellow/green 1 Hz	Changing 1 Hz	High
Bootloader	der Flashing yellow/red 1 Hz		Low
Reset	Start		
Preset	Green 1s off	1s Low	High
Error	Red	Low	Low

4.4 Error output

An error is displayed with a low level on the error output (see USL configuration instructions).

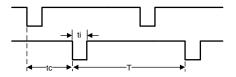


Fig. 4-2: Error output

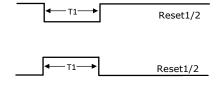
4.5 Status output

The status output displays the operating status in conjunction with the error output (see section 4.3.1).

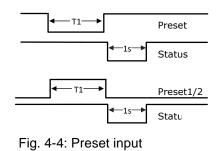
4.6 Reset input

A reset will restart the function module.

The input must be on high level when idle. A low level will execute a reset. The duration of low level T1 is configurable (default setting: 200 ms ... 2000 ms).


The configuration software can be used to change the behaviour of the reset input from low-active to high-active.

4.7 Preset input


A preset will set the current position of the preset position which can be configured in the ECU. A low level on the status output (approx. 1s) indicates a valid preset process.

The input must be on high level when idle. A transition between high and low will initiate the preset process. Valid transitions between low and high will trigger a preset. The duration of the low level T1 is configurable (default setting: 200 ms ... 2000 ms).

The configuration software can be used to change the behaviour of the preset input from low-active to high-active.

	NOTE!
Ĵ	• If test pulses are used on the inputs, they may be a max. of ¼ the min. dura- tion of T1 (5 ms to 50 ms).
	• Changing the input behaviour will impact both reset and preset inputs equally.
	• The reset and preset inputs must be activated before use with the configura-

- tion software.
- WARNING!
 A preset can only be set "on the fly" if a risk analysis has indicated that the application is suitable for this purpose.
 A preset will not influence the position value for the bus module. This position value can only be changed using the field bus interface.

4.8 Calculation of speed switching points

The speed is determined based on the incremental values for the base device and calculated in the ECU. A comparison with configurable switching points provides speed switching information which is provided to the switching modules.

4.8.1 Precision of speed switching points

The following errors must be taken into consideration:

- The switching time for safety relay T_{sw} is indicated in the data sheet for the switching module.
- Measurement precision ΔF (error when determining the speed): $\leq 2 \%$.
- Measurement angle for speed measurement φ: approx. 0.25°.

The max. switching deviation Δn is calculated using the following formula:

$$\Delta n = \sqrt{n_0^2 + \frac{\alpha \times \varphi}{3}} + \alpha \times \frac{T_{SW}}{1000} + \Delta F \times n_0 - n_0$$

Δn: max. switching error [1/min]

- n₀: Switching point [1/min]
- α: Acceleration [1/min / s]
- φ: Measurement angle [°]
- T_{Sw}: Switching time [ms]

4.9 Calculation of position switching points

The position values for the basic device are compared to the configurable switching points. The comparison provides position switching information which can be provided to the switching modules.

4.9.1 Precision of position switching points

The precision of the position switching points is specified by the base device.

4.10 Control signal for error relay

The signal from the error output is also delivered to the switching modules. An additional switching delay caused by the switching module must be taken into consideration.

UO-ECU or UO-ECU-G Operating and assembly instructions

4.11 Incremental output (not safety-related)

The optional incremental output delivers the number of pulses delivered by the base device. The output signals listed here are available (default setting: division factor 1).

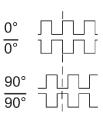


Fig. 4-5: Incremental signals

4.11.1 Electrical data Incremental output

	Value			
Number of pulses	Specified by the base device, e.g. 4096 pulses/revolution.			
Pulse division	1, 2, 4, 8 (configurable)			
Outputs	Current-limited, short-circuit resistant push-pull line drivers with integrated characteristic impedance adjustment for 30 \dots 140 Ω lines			
Signal amplitude (HTL)	Roughly equivalent supply voltage, output saturation voltage < 0.4 V at $I_{\rm L}$ 30 mA			
Output current	max. 50 mA at 24 V			
Duty cycle	1 : 1 ± 8 %			
Phase shift 0°, 90°	90° ± 6 %			
Max. frequency	190 kHz			
Max. line length	30 m			

4.12 Power output 4 – 20 mA (not safety-related)

The power output can be configured using the US42Pro software. The current value is determined either from the speed value or from the difference between two position values.

The load impedance (interior impedance of the measuring device) may be a maximum of 400 Ω at supply voltages < 16V and 600 Ω at supply voltages > 16V. The amplitude of the unloaded output may increase at a maximum to the amplitude of the supply voltage.

4.12.1 Current value from the speed value

The max. current value (I = 20 mA) can be assigned to any whole number speed value (Speed_{20mA}), whereby the value Speed_{20mA} may not exceed the maximum permitted speed of the USL. The area is divided in a linear fashion into 4096 (12Bit) steps.

If the speed is greater than the Speed_{20mA} value, the following output current will be set: Variation 1: I = 0 mA (high-impedance)

Variation 2: I = 20 mA

The behaviour is configurable. Default setting: I = 0 mA

Electrical data power output Speed

Information	Value			
Max. speed	Specified by the base device			
Precision	0.5% FSR			
Update time	approx. 2 ms			
Max. load impedance	400 Ω at supply voltage < 16V 600 Ω at supply voltage ≥ 16V			

4.12.2 Current value based on the difference of the two position values

Any 2 position values within the system limits can be selected. The smaller position value is assigned to current $I_{min} = 4$ mA and the larger position value $I_{max} = 20$ mA. The position values selected must be within the resolution range for the USL. The area is divided in a linear fashion into 4096 (12Bit) steps.

If the current position is outside of the set position range, then the following output current will be set:

Variation 1: I = 0 mA (high-impedance)

Variation 2:	Below position range:	I = 4 mA
	Exceeds position range:	l = 20 mA

The behaviour is configurable. Default setting: I = 0 mA

Electrical data power output Position

Information	Value		
Max. position difference	32000 revolutions		
max. setting precision	1 / 8192 revolution		
Precision of the current output	0.5 % FSR		
Update time	approx. 2 ms		
Max. load impedance	400 Ω at supply voltage < 16V 600 Ω at supply voltage ≥ 16V		

5 Inspections

5.1 Maintenance information

The ECU is maintenance-free.

5.2 Error table

Error	Possible cause	Troubleshooting	
Error output low	No power supply <u>Control:</u> LEDs not illumi- nated	Check the connection cable and power supply	
	An error was found	See USL configuration manual	
If the measures taken do not correct the error, please contact Hübner service (see page 2).			

Transportation, packaging and storage 6

6.1 Transportation safety information

CAUTION!

Property damage due to improper transportation!

These symbols and information on the packaging must be observed: Do not throw, risk of breakage, protect against wetness

6.2 Incoming goods controlling

The delivery must be checked promptly for transportation damage and to ensure it is complete upon receipt.

If there is transportation damage, the carrier must be informed directly upon delivery (take photos as evidence).

6.3 Packaging (disposal)

Packaging will not be taken back, and must be disposed of according to applicable statutory specifications and local regulations.

6.4 Storing packages (devices)

Protect against wetness!

Protect packages against wetness, store in a dry and dust-free location.

In case of long storage times (> 6 months), we recommend packaging the devices in protective packaging (with desiccants).

6.5 Returning equipment (repair/goodwill/warranty)

Service requests (repair/goodwill/warranty) can be initiated directly via the following online form:

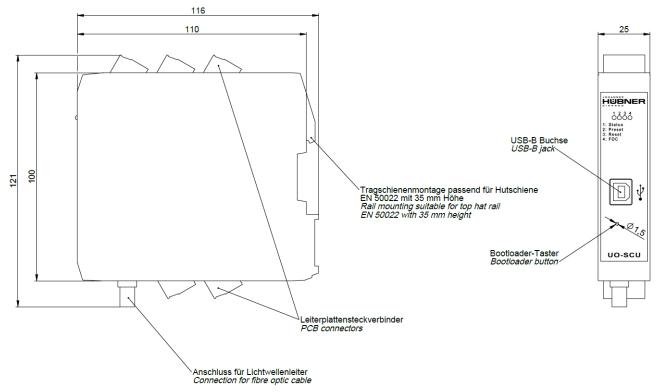
https://www.huebner-giessen.com/en/service-support/service/

There you will also find contact details for our service, as well as questions and answers regarding the processing.

Devices that have come into contact with radioactive radiation or materials will not be taken back.

Devices that have come into contact with biological or chemical substances that could be hazardous to health must be decontaminated before they are returned. A clearance certificate must be enclosed.

6.6 Disposal


The manufacturer is not obligated to take back the devices.

The ECU must be treated as special electronic waste, and must be disposed of according to specific national law.

Local municipal authorities or speciality disposal companies can provide information on environmentally-appropriate disposal.

7 Documents

7.1 Dimensional drawing for the ECU and SCU function modules

7.2 Connection diagrams

	U-ONE-LWL / ECU Connection diagram PN165-404			
1	Reset CH1		13	
2			14	
3	Preset CH1		15	
4			16	
5	Status CH1		17	
6			18	
7	Error CH1		19	
8			20	
9			21	
10			22	
11	GND		23	
12	12 V30 V DC		24	

U-ONE-LWL / ECU-G Connection diagram PN165-405				
1	Reset CH1		13	
2			14	
3	Preset CH1		15	
4			16	
5	Status CH1		17	Incr. Output 0°
6			18	Incr. Output 0° invers
7	Error CH1		19	Incr. Output 90°
8			20	Incr. Output 90° invers
9			21	
10			22	
11	GND		23	Output 20 mA
12	12 V30 V DC		24	GND 20 mA